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A sensitive and simple method was developed for the classification of wines according to variety,

geographical origin, and vintage using NMR-based metabonomics. Polyphenol-rich extracts were

prepared from 67 varietal wines from the principal wine-producing regions of Greece, using

adsorption resin XAD-4. 1D 1H NMR spectra obtained from the corresponding extracts were

segmented, integrated, and normalized, and the data were subjected to principal component

analysis. The chemometric classification of wines according to their phenolic profile allows

discrimination between wines from different wineries of the same wine-producing zone and between

different vintages for wines of the same variety.
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INTRODUCTION

Wine is an important agricultural product closely related to
human history and civilization. Moreover, it is a product of
significant commercial value; thus, it has been a target of econom-
ic fraud.Adulterationmaybepracticedbygrape juice fortification
with sugars and/or colorants to increase alcohol content and color
intensity or by mixing high-quality wine produced in restricted
areas (denomination of controlled origin, DOC) with wine of
reduced quality, oftenoriginating fromother geographical regions
or countries. Therefore, there is significant interest in developing
accurate methods for wine characterization that could be used to
prevent adulteration and to classify wine from different geogra-
phical origins or countries (1,2). At present, wine analysis is based
on a variety of analytical techniques with various degrees of
sensitivity and specificity such as high performance liquid chro-
matography (HPLC), gas chromatography (GC), mass spectro-
metry (MS), near-infrared spectroscopy (NIR), and nuclear
magnetic resonance spectroscopy (NMR) (3,4). These techniques
have often been used in combination in order to obtain maximum
information (5, 6). 1H NMR spectroscopy is a method of choice
for assessing complex mixtures because it allows the simultaneous
monitoring of a variety of compounds. In combination with
multivariate statistical analysis techniques it has been extensively
used inmetabonomic studies of biofluids and tissues (7), as well as
in food classification and origin determination (8-12). Pattern
recognition and relatedmultivariate statistical approaches such as
the unsupervised principal component analysis (PCA) and the
supervised partial least-squares discriminate analysis (PLS-DA)
can beused to discern significant patterns in complex data sets and
aim at classifying objects by identifying inherent patterns in a set

of indirectmeasurements (13). Inparticular,NMRspectroscopyhas
been applied for grape and wine analysis and classification accord-
ing to geographical origin, variety, and vintage (6, 9, 14) as well as
metabolite evolutions during alcoholic fermentation (15-17).
Recently an NMR-PCA method has been reported for the
classification of wines based on their primary constituents profile
(amino acid and sugar etc.) without any or with minimum sample
preparation (10, 18-20). Direct wine analysis often results to
chemical shift variations of various metabolite signals due to
differences in pH values necessitating peak alignment procedures
to be employed (21).On the other hand, there is strong evidence that
the phenolic composition of wines can be used as a metabolic
fingerprint for the classification of wines according to variety,
vintage, and soil (22, 23). The phenolic compounds of wines are
not only responsible for some very important organoleptic char-
acteristic of the wine, such as color, astringency, and bitterness, but
also possess significant biological properties such as anticarcino-
genic, antiviral, and cardioprotective activities (24-26).

The presence of phenolic secondary metabolites in grapes and
consequently in wines is strongly affected by a number of factors,
such as grape variety, soil, climate, agricultural practices, UV
irradiation, weather conditions, infections, and maturation
stage (27, 28). Furthermore, wine phenolic composition is influ-
enced by vinification techniques and wine aging. Thus, it is of
great interest to investigate whether the phenolic profile of a wine
could be used as an index for the classification of wines of a
certain variety, geographical region, and vintage.

A facile and efficient extraction of the phenolic compounds of
wine is crucial for method development and can be performed by
adsorption-desorption processes using highly efficient sorbents
such as XAD type resins (29, 30). The chemical structure of the
resin material favors adsorption by weak interactions of mole-
cules with moieties of high electron density, such as aromatic
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rings. In contrast, sugars or polar lipids cannot establish this kind
of interaction and are eluted with the water flow during the
rinsing phase. The adsorbed phenolic compounds can then be
recovered by elution with EtOH, giving an enriched extract.

Using of the above procedure we introduce herein a simple and
convenient method for the classification of the principal red and
white Greek wines, according to variety, region, and vintage, on
the basis of their phenolic profile. The method relies on the
application of PCAandPLS-DA techniques on the data acquired
from the 1H NMR spectra of the enriched phenolic extracts of
wines prepared using adsorption resin XAD-4.

MATERIALS AND METHODS

Reagents. MeOH used for the extraction of polyphenols was pur-
chased from J. T. Baker and it was of HPLC grade. MeOD 99.9% was
purchased from Sigma-Aldrich, and distilled water was prepared from a
distillation apparatus. Resins XAD-4, XAD-7HP, and XAD-16 were
purchased from Rohm and Haas. Reference compounds gallic acid, (þ)-
catechin, (-)-epicatechin, p-coumaric acid, ferulic acid, 4-hydroxybenzoic
acid, chlorogenic acid, tryptophol, trans-caffeic acid, syringic acid, trans-
cinamic acid, kaempferol, quercetin, quercetin-3-O-galactoside, quercetin-
3-O-glucoside, and trans-resveratrol were purchased from Sigma-Aldrich.
trans-Caftaric acid was isolated with preparative HPLC and quantified
using the trans-caffeic acid curve.

Sample Collection. Wine samples were collected from principal
Greek grape varieties, red (Agiorgitiko and Mandilaria) and white
(Moschofilero and Asyrtiko), cultivated inNemea region in Peloponnesus
and the island of Santorini for two successive vintages, 2005 and 2006.
Agiorgitiko variety is grown mainly in the appellation d’origine contrôl�ee
(AOC) regionNemea, producing high-quality redwines.Moschofilero is a
distinct aromatic grape variety with pink skin cultivated mainly in the
Peloponnesus, producing white wines. Asyrtiko is considered to be the
most important Greek white grape variety. It was first cultivated on
Santorini, a volcanic island in the southern Aegean Sea with extreme
weather conditions and limited rainfall, where it has developed a unique
character producing excellent AOC wines. Asyrtiko is also the main
constituent of Vinsanto, a naturally sweet wine that has been produced
on Santorini since medieval times. Mandilaria is a red grape variety
characteristic of the Aegean Sea islands and Crete. It is usually blended
with other red grape varieties to produce AOC wines.

Among the varieties studied, Agiorgitiko is of special interest because it
is the principal Greek variety producing wines with appellation of origin
name, and thus it may be a target of economic fraud. Furthermore, the
Nemea region shows a wide geological diversity with vineyard altitudes
varying between 200 and 850 m. For this reason an attempt was made to
cover the whole area of Nemea to construct the metabolic fingerprint for
this type of wine. The variety and origin of the 67 analyzed wines are
summarized as follows (see also Table S1 of the Supporting Information):
ARN1, Agiorgitiko red wine from Cooperative of Nemea Winery, 2006
vintage (n = 20); ARN2, Agiorgitiko red wine from Lafazanis Winery,
Nemea, 2005 (n = 9); ARN3, Agiorgitiko red wine from Lafazanis
Winery, Nemea, 2006 (n = 4); ARN4, Agiorgitiko ros�e wine from
Cooperative of Nemea Winery, 2006 vintage (n = 2); MWN1, Moscho-
filero white wine from Lafazanis Winery, Nemea, 2006 (n = 3); MRS1,
Mandilaria red wine from Cooperative Santorini, 2005 (n = 3); MRS2,
Mandilaria red wine from Cooperative Santorini, 2006 (n = 3); AWS1,
Asyrtiko white wine from Cooperative Santorini, 2005 (n = 10); AWS2,
Asyrtiko white wine from Cooperative Santorini, 2006 (n = 13).

Each sample was collected from a different vinification tank in each
winery 5 months after the beginning of the vinification procedure
(February 2006 and 2007) before any mixing for commercial use, to
ensure representative statistical variance of the variety and geographical
origin aswell as differences in the vinificationprocedures.All sampleswere
stored at 2 �C prior to analysis.

Sample Preparation. One hundred and fifty milliliters of each wine
sample was diluted with the appropriate volume of distilled water so that
the final alcoholic grade was about 6.0% v/v. The corresponding solution
was loaded on a glass column, filled with 15 g of XAD resin, previously
prepared with sequential passing of 30mL of EtOH and 30mL of distilled

water. The flow rate was set at 1.5 mL/min. The column was then washed
with water to remove sugars and dried with air. The phenolic fraction was
then collected with elution of the column with 60 mL of EtOH at a flow
rate of 2.0mL/min, and the solvent was evaporated under vacuumat 40 �C
until dryness. Finally, each extract was dissolved in 700 μL of MeOD for
NMR analysis.

1H NMR Spectroscopy. Spectra were acquired on a Bruker DRX-
400 Avance spectrometer using a single 90� pulse experiment with water
suppression. Typically, 64 scans were collected into 64Kdata points over a
spectral width of 12000Hzwith a relaxation delay of 5 s and an acquisition
time of 2.7 s. Prior to Fourier transformation (FT), the FIDs were zero-
filled to 128K and an exponential weighing factor corresponding to a line
broadening of 1 Hz was applied. The spectra were phase corrected
interactively using XWINNMR. A baseline correction factor was applied
to each spectrum using a simple polynomial curve fitting of the mathe-
matical equation A þ Bx þ Cx2 þ Dx3 þ Ex4. Baseline correction was
carried out manually using each time the appropriate factors (31).

Sample Fortification. Fortification was performed by successive
addition of 1.0 mg of 10 pure phenolic compounds shown in Scheme 1.
1H NMR spectra of the corresponding solutions were acquired to assign
the corresponding signals in the wine-derived complex phenolic mixture.

Data Reduction of NMRSpectra andMultivariate Analysis. The
aromatic region (δ 5.40-10.48) of the wine sample spectra was
segmented into 126 chemical shift regions of 0.04 ppm width using
the AMIX (Analysis ofMixtures) software package version 2.7 (Bruker
Analytische Messtechnik, Karlsruhe, Germany) Each region was
integrated and normalized using the total intensity of the aromatic
region (δ 5.40-10.48) (31 ).

Data were further subjected to PCA and PLS-DA (13), using the
SIMCA-P 10.5 software package (Umetrics, Ume

�
a, Sweden). Prior to

PCA, data weremean-centered and then scaled using both Pareto and unit
variance (UV) scaling. Mean-centering implies that the variables are
centered, but not scaled. In UV scaling, variables are centered and scaled
to unit variance, which means that “long” variables are shrunk and
“short” variables are stretched, so that all variables will rest on equal
footing using as scaling factor the standard deviation. Pareto scaling is
between no scaling and UV scaling using the square root of the standard
deviation as the scaling factor.

PCA is a multivariate projection method useful in classifying samples
according to their common spectral characteristics. A plot of the first two
principal components (scores plot) provides a two-dimensional represen-
tation of the information contained in the data set. In addition, a
corresponding “loadings plot or coefficient histograms” provides informa-
tion on the variables that influence any observed clustering of samples.
PLS-DA is a supervised method used when clusters are not distinctly
separated in the scores plot and groups overlap; PLS attempts to derive
latent variables, analogous to PCs, which maximize the covariation
between the measured data (X) and the response variable (Y) regressed
against. PLS-DA was applied to the groups of samples using NMR
spectral data asXmatrix and groupmembership as the responsematrixY.
Two different PLS-DA models were applied for further classification of
wine samples from each region studied, one forNemeawines, including all
red wines from Agiorgitiko cultivar (ARN1 = class 1; ARN2 = class 2;
ARN3 = class 3) (training set I), and the second for Santorini wines,
including all whitewines fromAsyrtiko cultivar for 2005 and 2006 vintages
(training set II). The confidence level for membership probability was
considered to be 95%; observations at<5% are considered to be outliers.
The overall predictive ability of the model is assessed by cumulative Q2

representing the fraction of the variation ofY that can be predicted by the
model, which was extracted according to the internal cross-validation
default method of SIMCA-P software.

HPLC Analysis. HPLC analysis of wines was carried out with the
method already described in a previous paper (32). Briefly, wine samples
were directly injected into a Thermo Finnigan 3000 chromatographic
system equippedwith a quaternary pump, an autosampler, a degasser, and
a diode array detector (DAD). Polyphenols were separated on a Lichro-
sphere C18 column (250 mm � 4.1 mm, particle size = 5 μm) and a C18
guard column of the same type. The mobile phase consisted of solvent A
(2 mM sodium acetate aqueous solution with 3% v/v acetic acid) and
solvent B (ACN). Run timewas 70min, and the flowwas 1.0mL/min. The
injection volume was 20 μL, and polyphenols were eluted using a gradient
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system. The analysis was monitored at 280, 320, and 360 nm simulta-
neously. Peaks were identified by comparing their retention time and
UV-vis spectra with those of reference compounds, and data were
quantified using the corresponding curves of the reference compounds
as standards. All standards were dissolved in synthetic wine matrix
consisting of a H2O/EtOH (85:15) solution with 0.3% w/v tartaric acid.
Results were expressed in milligrams per liter of wine.

Identification of Pure Compounds. trans-Caftaric acid was unam-
biguously characterized on the basis of its physical and spectral data, as
previously described (32).

Statistical Analysis. Statistical analysis was performed using Statis-
tica 7.0. Differences between HPLC results were located using a t test, and
significance was determined at p<0.05. HPLC data were reported as the
mean ( SD of the individually analyzed samples.

RESULTS AND DISCUSSION

Extraction Method. Three resins, namely, XAD-4, XAD-7HP,
and XAD-16, were examined for their ability to adsorb low
molecular mass polyphenols. The optimum conditions for poly-
phenol extraction were first determined by evaluating the quality
of the aromatic part of the corresponding NMR spectrum of the
extract. The properties of the adsorbents are presented inTable 1.

The 1H NMR spectra of the wine extracts prepared from the
three different resin types (Figure 1S of the Supporting Infor-
mation) revealed that the sample obtained from XAD-4 extrac-
tion showed an aromatic spectral area with distinctively sharper
peaks and better signal-to-noise ratio compared to the spectra
from XAD-7HP and XAD-16. The lower signal width observed
for the XAD-4 extract resulted in significantly less overlapping
and better resolution. Spectra frombothXAD-7HP andXAD-16

samples are characterized by broad signals in the baseline due
probably to polymeric species. XAD-4 has been successfully used
in the past for the recovery and isolation of phenolic compounds
fromplant materials (29,30). Our results demonstrate that XAD-
4 resin is more selective for low molecular weight polyphenols
than the other two resins examined, producing enriched phenolic
extracts of high purity.

These properties make XAD-4 particularly useful for sample
preparation from white wines, which have a significantly lower
phenolic concentration than red ones.

At this point it should be noted that the alternative minimum
sample preparation with no extraction and straightforward
freeze-drying results in spectra dominated by the carbohydrate
signals, whereas the aromatic area resonances are very weak and
relatively broad (Figure 1S,D of the Supporting Information).
Furthermore, as has previously been stated, the conditions of the
freeze-drying method are not easily controlled, resulting in low
reproducibility (33).

Therefore, XAD-4 resin was selected for the preparation of all
wine extracts with the aforementioned procedure.

1H NMR Spectra and Multivariate Analysis. The aromatic
region (δ 5.8-8.10) of the 1H NMR spectra of wine extracts
exhibits characteristic signals arising from the phenolic content of
the wines as shown in Figure 1. Due to signal overlapping,
assignment of the resonances was possible only for the major
phenolic compounds after fortification. Detailed assignment of
the various protons of the reference compounds (Scheme 1) in the
spectra is provided as Supporting Information and is summarized
in Table 2.

The aromatic area of 1H NMR spectra (δ 5.40-10.48) was
segmented, integrated, and normalized, and the data were sub-
jected to PCA.Data were centered and scaled usingUVor Pareto
scaling. The latter resulted in the most adequate models, and the
analyses presented hereafter were all performed after Pareto
scaling.

Initially, PCA was performed over all of the wine samples and
revealed a quite clear discrimination between samples of different
cultivars and geographical origins. The PC1/PC2 scores plot

Scheme 1. Structures of the Phenolic Compounds Identified in Wine Extracts through the Fortification Process

Table 1. Properties of the Tested Adsorption Resins

resin XAD-4 XAD-7HP XAD-16

copolymerisate styrene-
divinylbenzene

acrylate-
divinylbenzene

styrene-
divinylbenzene

specific surface (m2 g-1) 750 450 750

porosity (cm cm-3) 0.65-0.70 0.55 0.58-0.63

bulk density (g m-3) 0.62-0.63 0.62 0.61

particle size (mm) 0.3-1.2 0.3-1.2 0.3-1.2
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(Figure 2) shows that four major distinct clusters are formed
corresponding to the four different varieties studied.Moreover, a
clear separation between the two geographical regions of produc-
tion is observed: on the left side of the plot, wines produced in the
appellation of Nemea are positioned, whereas on the right side,
wines from Santorini Island are located. On the other hand,
discrimination between red and white wines is also possible, with
whitewines being placedon the upper right part of the scores plot.
Moreover, the ros�e wines produced in Nemea from the Agiorgi-
tiko cultivar are placed between the white and red wines from the
same region. Wines from the Mandilaria cultivar also show a
tendency to separate according to vintage, although the number
of samples is limited.

To examine the validity of the method, four different wine
extracts were prepared separately from the same Mandilar-
ia-Santorini initial wine sample. Their spectroscopic data were
analyzed along with all other samples, and their final position on
the PCA scores plot was identical, suggesting a satisfying repro-
ducibility of the method (data not shown).

Examination of the loadings plot suggested that the variables
referred to the resonances of (þ)-catechin, gallic acid, syringic

acid, (-)-epicatechin, quercetin, trans-resveratrol, p-coumaric
acid, and trans-caffeic acid contributed to the discrimination of
wines (see Supporting Information Figure 2S).

In a second step the possibility to discriminate between wine-
ries and vintage years was further examined. Figure 3A presents
the PCA of theNemeaAgiorgitiko red wines studied. A tendency
to separate wines from the two different wineries is observed.
Most of the ARN1 samples are placed on the right side of the
vertical line representing PC2, whereas ARN2 and ARN3 wines
are placed on the left side. Simple PCAcomparing the two vintage
years 2005 and 2006 did not result in discrimination between the
two groups (data not shown). Further PLS-DA was applied for
these data, giving a complete separation between 2005 and 2006
vintages (Q2=0.55) (Figure 3B). The PLS-DAmodel was further
validated using a test set consisting of four ARN1 and three
ARN2 samples. All test set samples were correctly assigned,
validating the discriminant model. The 2005 vintage was char-
acterized by heavy rainfall in the appellation of Nemea during
harvest time, resulting in overhydration of grape berries and thus
lower concentration of polyphenols, which could be a possible
explanation for the separation of the vintages.

Figure 1. Representative 400 MHz 1H NMR spectra (δ 5.80-8.10) of (A) Mandilaria and (B) Agiorgitiko wines along with the assignment of resonances
resulting following spiking of 10 standard polyphenols. (For resolution reasons the spectra presented were processed using Gaussian multiplication of the FID
(LB = -2, GB = 0.1 prior to Fourrier transform.)

Table 2. 1H NMR Chemical Shifts of the Phenolic Components Detected in Winesa

no. compound δ1H (multiplicity, assignment)

1 gallic acid 7.08 (s, H2, H6)

2 (þ)-catechin 6.84 (d, H20), 6.76 (d, H50), 6.72 (dd, H60), 5.93 (d, H6), 5.85 (d, H8), 4.57 (d, H2), 3.98 (td, H3), 2.85 (dd, H4ax), 2.50 (dd, H4eq)
3 (-)-epicatechin 6.97 (d, H20), 6.79 (m, H50), 6.77 (m, H60), 5.94 (d, H6), 5.92 (d, H8), 4.81 (s, H2), 4.18 (m, H3), 2.85 (dd, H4ax), 2.74 (dd, H4eq)
4 quercetin 7.74 (d, H20), 7.64 (dd, H60), 6.89 (d, H50), 6.40 (d, H8), 6.19 (d, H6)
5 kaempferol 8.08 (d, H20, H60), 6.91(d, H30 H50), 6.41 (d, H8), 6.18 (d, H6)
6 trans-caffeic acid 7.53 (d, H-R), 6.22 (d, H-β), 7.04 (d, H2), 6.93 (dd, 6), 6.78 (d, H5)
7 p-coumaric acid 7.60 (d, H-R), 6.28 (d, H-β), 7.45 (d, H2, H6), 6.80 (d, H3, H5)
8 trans-resveratrol 7.35 (d, H20, H60), 6.45 (d, H2, H6), 6.16 (t, H4)
9 syringic acid 7.32 (s, H2, H6), 3.87 (s, OMe3, OMe5)

10 ferulic acid 7.67 (d, H-R), 6.47 (d, H-β), 7.17 (d, H2), 7.38 (dd, H3), 7.53 (d, H6), 3.90 (s, OMe5)

a s, singlet; d, doublet; dd, doublet of doublet; m, multiplet; td, triplet of doublet.
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Similarly, PLS-DA was applied for data obtained from Asyr-
tiko wines, also resulting in a complete separation between 2005
and 2006 vintages (Q2 = 0.49) (Figure 3C). The PLS-DA model
was further validated using a test set of three AWS1 and three
AWS2 samples. All test set samples were correctly assigned apart
from a sample from 2006 vintage, which was placed close to the
2005 samples.

To clarify the discrimination reasons between the different
cultivars, PCA was also applied between Agiorgitiko and Man-
dilaria (red) wines (data not shown). In the first plot the PC2 axis
separates wines according to color and region. Examination of
the loadings suggests that the separation of Mandilaria and
Agiorgitiko wines is achieved due to spectral domains belonging
to the resonances of gallic acid, syringic acid (δ 7.32), (-)-
epicatechin, trans-caffeic acid, and other unidentified phenolic
compounds. Further studies for the identification of the type and
structure of the polyhenolic compounds present in wine are in
progress using LC-NMR-MS analysis.

HPLC Analysis. The average concentration for the phenolic
compounds identified in eachwine group for the 2006vintage group
using HPLC-DAD is presented in Table 3. Among the major
polyphenols detected in wines was the monomeric flavanol (þ)-
catechin, averaging between 55.39( 18.86 and 70.98 ( 4.07 mg/L
for red wines and between 4.01 ((0.57) and 16.92 ((2.61) mg/L for
white wines. Its isomeric form, (-)-epicatechin, was also detected
but in lower concentrations.All redwines (ARN1andMRS2) were
rich in (þ)-catechin and (-)-epicatechin, with no significant differ-
ences in their concentrations (p > 0.05). On the contrary, signifi-
cantly higher concentrations of these flavanols were detected in the
white wines from Santorini (AWS2), compared to the white wines
fromNemea region (MWN1) (p<0.0.5), with (þ)-catechin levels
being almost 2-fold higher than in ros�e wines (ARN4) (p< 0.05).

Among the hydroxybenzoates, gallic acid was the most abun-
dant phenolic acid in wines and the phenolic compound with the
highest concentration in general. InMandilariawines, in particular,
the average concentration of gallic acid was 102.00 ( 4.72 mg/L.
Syringic acid was present in lower concentrations with the higher
concentration being observed forARN1wines (5.84( 1.20mg/L),
whereas no significant differences were found for ARN3, ARN4,
and MSR2 wines (p > 0.05).

From the hydroxycinnamates, caffeic acid and its ester caffeoyl-
tartaric acid (trans-caftaric acid) were detected in considerable

Figure 2. PCA scores plots derived from 1HNMRspectra of extracts of red
and white wines from Santorini Island and Nemea region: (9) ARN1; (4)
ARN2; (b) ARN3; (1) ARN4; (0) MWN1; (2) MRS1; (3) MRS2; (O)
AWS1; ([) AWS2.

Figure 3. Multivariate analysis plots exhibiting classification of samples
according to winery and vintage year: (A) PCA scores plots derived from
1H NMR spectra of red wine (Agiorgitiko) extracts produced in Nemea
region (clustering of samples according to wineries is shown by dashed line
ellipses added on the plot for clarification purposes); (B) PLS-DA scores
plot for red Agiorgitiko wines from Nemea region exhibiting classification
according to vintage year: (C) white Asyrtiko wines from Santorini Island
exhibiting classification according to the vinification year. Classification of
test set samples was predicted using the model created by the training set
samples data. Key: (A) (9) ARN1; (4) ARN2; (b) ARN3; (1) ARN4; (0)
MWN1; (2)MRS1; (3)MRS2; (O) AWS1; ([) AWS2; (B,C) (9) ARN1
samples of the training set; (4) ARN2 samples of the training set; (b)
ARN3; (slashed square) ARN1 samples of the test set; (2) ARN2 samples
of the test set; (O) AWS1 samples of the training set; (]) AWS2 samples
of the training set; (slashed circle) AWS1 samples of the test set; (slashed
diamond) AWS2 samples of the test set.
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amounts in both red and white wines. trans-Caftaric acid was
the most abundant, with MSR2 wines having the highest con-
centration among red wines, averaging 63.32 ( 2.88 mg/L, and
AWS2 among white wines with an average concentration of
36.19 ( 6.43 mg/L. p-Coumaric acid was also present in lower
concentrations, whereas ferulic acid was detected in amounts
lower than the quantification limit.

From the flavonol group the glycosides quercetin-3-O-galacto-
side and quercetin-3-O-glucoside were detected in considerable
amounts, especially in Santorini wines, with the first being the
most abundant. MSR2 wines contained significantly higher
amounts of Q-3-O-galactoside and Q-3-O-glucoside in compar-
ison to ARN1, ARN3, and ARN4 wines ( p < 0.05), with
concentrations averaging 13.74 ( 1.13 and 7.52 ( 1.79 mg/L,
respectively. Similarly, AWS2 wines were significantly richer in
quercetin glycosides than MWN1 wines (p < 0.05).

The aglycon quercetin was present in considerably lower
amounts than its glycosylated forms, with average concentrations
between 1.50 ( 1.20 and 4.35 ( 0.61 mg/L for red wines and
between 0.58 ( 0.50 and 1.60 ( 0.76 mg/L for white wines.
Kaempferol was detected in very low amounts in Santorini wines,
whereas inNemea wines it was found in traces and quantification
was not possible. The relatively high flavonol content of Santorini
wines could be an indication of stress factors affecting the plants,
such as UV irradiation.

Finally, the stilbene trans-resveratrol was detected in relatively
low amounts in both Nemea and Santorini wines. Mandilaria
wines exhibited the highest trans-resveratrol content, with an
average concentration of 1.55 ((0.16) mg/L (p < 0.05).

These results are in a general agreement with previous studies
concerning the phenolic profile of Greek wines (34-37).

HPLC results indicate that wines from the Mandilaria variety
exhibit a higher phenolic content among red wines and Asyrtiko
among white, which is attributed to a combination of plant
genome and region. As alreadymentioned, Santorini is a volcanic
island with extreme weather conditions, and vines grow under
water stress, resulting in the accumulation of polyphenols in the
plant tissues. Other studies on the phenolic composition of
varietal Greek wines have also revealed the exceptional phenolic
potential of Asyrtiko cultivar, a variety cultivated mainly on
Santorini Island, which produces wines distinctive for their rich
phenolic content amongwhite wines (36). Also,Mandilaria wines
showed an elevated phenolic profile compared to Agiorgitiko
wines (37).

Some interesting comparisons can also be made between
Agiorgitiko wines from different wineries. Agiorgitiko wines
from both wineries show a similar pattern in their phenolic
composition; ARN3 wines, though, appear to have an elevated
phenolic content compared to ARN1 wines. In particular,
statistically important differences (p < 0.05) were found in the
content of quercetin glycosides and the phenolic acids: syringic,
trans-caffeic, and trans-caftaric acid, revealing that factors suchas
soil composition, infections, and agricultural and vinification
practices result in the production of wines with unique phenolic
composition, even within a restricted geographical area. This
observation is also supported by the large deviation observed for
ARN1 wines produced by the cooperative of Nemea, which
covers a large number of vineyards in the Nemea region.

PCA was conducted on HPLC data, and the most adequate
models were obtained after Pareto scaling (Figure 4). PCA
revealed a good separation between wines of different varieties.
Red wines are mainly placed on the positive side of PC1 axis;
Mandilariawines are placed in the upper right corner of the elipse,
whereas for Agiorgitiko wines some spreading has been observed
on both sides of the PC2 axis. There is also a good discriminationT
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between Agiorgitiko produced in the different wineries. White
and ros�e wines are all located on the negative side of the PC1 and
PC2 axis. Ros�e wines from Agiorgitiko are placed between the
white and red wines from the same region, in accordance with the
results produced by 1HNMRdata. PCA of theHPLCdata failed
to separate wines according to origin, as was accomplished with
1HNMRdata, and separationwasmainly achieved by color. The
loadings plot (data not shown) suggests that gallic acid alongwith
(þ)-catechin and (-)-epicatechin dominate the first component,
exhibiting the higher distance from the plot origin. The concen-
tration of these polyphenols in red wines exhibits higher differ-
ences compared to white wines (Table 3) and characterizes the
different locations of red and white wines along PC1. trans-
Caftaric acid dominates the second component correlated posi-
tivelywith quercetin-3-O-galactoside. The location ofMandilaria
red wines from Santorini correlates with the increased concentra-
tion of trans-caftaric and gallic acid and to a lesser extent to
quercetin-3-O-galactoside. Compared to the 1H NMR data
(Figure 2S of the Supporting Information), gallic acid and also
quercetin dominate the separation between the two different
regions’ red wines, whereas differences in syringic acid character-
ize the position of white wines in the PCA scores plot (Figure 2).

In general, discrimination of wines was satisfactory with both
1HNMRandHPLC data used, and there was a good correlation
between the two techniques applied. Wine metabonomics based
on their phenolic profile is usually performed with HPLC data,
the most popular method of analysis for phenolic com-
pounds (35,38). It could be argued that the first is advantageous
over the second in both accuracy and simplicity, because 1H
NMR spectra contain all of the information of the aromatic
compounds present in a wine extract and there is no need for
standards to identify and quantify certain peaks in the chromato-
gram. Moreover, NMR spectra can be obtained with higher
reproducibility than chromatograms, which need careful choice
of analytical conditions (column, solvents, etc.). Furthermore,
PCA using the chromatographic data is more time-consuming
because the total run time for each chromatogram is quite long
and the data need to be further processed to complete the
quantification of the phenolic compounds identified.

Overall, wines can be classified according to variety, region,
and year of production on the basis of their phenolic extract
obtained by XAD resin and monitored by NMR in combination
with multivariate analysis chemometric methods.

Our results show that XAD resin can be successfully applied
for the isolation of the phenolic compounds from wines and the

production of enriched phenolic extracts, even for white wines,
which have a very low phenolic concentration compared to red
wines.

Polyphenols constitute a metabolic fingerprint of grapes and,
consequently, wines and can be used for their classification. The
phenolic composition of a wine appears to be characteristic of the
variety and the year of production, as well as the vinification
technique, allowing discrimination between wines of different
vintages and wineries.

XAD polyphenol extraction combined with NMR spectros-
copy and multivariate analysis is a rapid method capable of
detecting differences between similar mixtures of organic mole-
cules derived from diverse plants or fruits. The method can
highlight differences in simple PCA scores plots, reducing the
necessity for more laborious measurements of mixture constitu-
ents, and it could be applied in various problems of food product
classification and authentication.
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